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This expression is used to calculate the ratio for
N-type silicon with resistivities 11.1 ohm-cm and 3.1
ohm-cm. In computing ||, it is recalled that ¢, was de-
fined by

.0-0
€0=€S+1—
[¢Y)

where €,=¢,¢, and ¢, is the permittivity of vacuum. At
room temperature o, reduces to og.. Thus,

k2 = wuoes — A2

leads to

2w
[ = = = Qo2 + [oao/we 2] e

¢

where 21 /Ao = w/ue€; and A, =27 /k.

The following numerical values were used in the

calculation:
& =12 f = 22235 Ge/s
vr = 1450 cm?/volt-s Ao = 0.388 cm
B = 10 kilogauss A, = 2.14 cm
o = 0.43 cm.
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The resulting values for the ratio are
R = 0.288
R =0.709

for 11.1 ohm-cm

for 3.1 ochm-cm.

Calculations on the basis of a model using the Boltzmann
transport equation [10] lead to results which are smaller
than the above values by a factor of 0.88 or 1.1 dB.
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Log-Periodic Transmission Line Circuits—Part I:
One-Port Circuits

R. H. DuHAMEL, rELLOW, IEEE, AND M. E. ARMSTRONG, MEMBER, IEEE

Abstract=A theoretical study of one-port log-periodic circuits
consisting of a transmission line shunt loaded with open-circuit
transmission lines is reported. The objective was to determine the
conditions under which the phase of the input reflection coefficient
varies linearly with the logarithm of the frequency. Precise definitions
and general analytical techniques for log-periodic circuits are given.
Results of extensive numerical calculations are presented to illus~
trate the dependence of the input reflection coefficient on the various
design parameters. It was found that phase deviations from linear
on the order of one degree are quite easily achieved.

Manuscript received October 21, 1965; revised February 17, 1966.
The authors are with the Hughes Aircraft Company, Ground
Systems Group, Fullerton, Calif.

I. INTRODUCTION

HE OBJECTIVES here are to introduce and ex-

l plain new concepts for transmission line circuits
which are constructed according to log-periodic
design principles. As with the corresponding log-
periodic antennas, these circuits provide essentially
frequency-independent performance over any desired
finite bandwidth. Figure 1 illustrates strip line versions
of the four types of circuits to be discussed. The lines in
the drawings represent strips which may be inserted
between parallel ground planes. The one-port circuit of
Fig. 1(a), which is the subject of this report, can be de-
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signed, such that the magnitude of the input reflection
coefficient is constant and the phase varies linearly with
the logarithm of the frequency.

As will be described in subsequent papers, the multi-
port circuits of Figs. 1(b), (c), and (d) may be designed
to perform as matched junctions with certain desirable
characteristics, Under certain conditions, the two-port
circuit of Fig. 1(b) may be adjusted such that the phase
of the transmission coefficient varies linearly with the
logarithm of the frequency. A constant phase difference
circuit may be achieved by using two identical two-port
circuits, with the exception that one is scaled by a cer-
tain fraction of a period with respect to the other. The
four-port circuit of Fig. 1(c) with two-fold symmetry
can be designed to perform as a quadrature hybrid for
which the coupled outputs are 90 degrees out of phase.
The eight-port circuit of Fig. 1(d) with 45 degree rota-
tional symmetry can function as a magic-T if oppo-
site ports are connected as balanced pairs. By symme-
try, there is isolation between orthogonal pairs of termi-
nals and the coupled outputs are either in phase or out
of phase.

Strictly speaking, these log-periodic circuits do not
give frequency-independent performance,since the phase
of the scattering coefficients varies, in general, in a log-
periodic manner and, ideally, linearly with the logarithm
of the frequency. However, the magnitudes of the scat-
tering coefficients are essentially independent of fre-
quency. This basic dispersive property of log-periodic
structures was first observed by DuHamel and Ore [1]
and was termed the phase rotation principle for log-
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periodic antennas. The significance of this dispersion on
broadband signals was pointed out by Pulfer [2].

Considerable effort has been expended on the analysis
of various log-periodic circuits and antennas. The most
important is the classical work of Carrel [3] on the log-
periodic dipole antenna. Using an equivalent circuit
approach, he obtained complete solutions and design
information for the antenna. DuHamel [4] discussed
lumped-constant and distributed constant log-periodic
circuits and derived exact solutions in terms of elliptic
functions for a Foster type circuit consisting of an in-
finite number of series RLC networks connected in
parallel. Mittra [5] extended the work of DuHamel and
also analyzed a log-periodic lump-loaded transmission
line. Precise definitions and the general characteristics
of frequency-independent transmission lines and log-
periodic circuits and transmission lines were given by
DuHamel [6]. It was deduced that the input impedance
of a log-periodic structure is a doubly periodic function
of the logarithm of the complex frequency. An approxi-
mate solution for a lossless transmission line with log-
periodic sinusoidal impedance variation was also given.
Mittra and Jones [7] performed studies of the voltage
distribution on frequency-independent (or continuously
scaled) and log-periodic transmission lines shunt loaded
with series RLC impedances. Since their objective was
to gain a better understanding of the operation of an-
tennas, such as the log-periodic dipole array, they con-
centrated on transmission lines for which the VSWR
was small. Bevensee [8] derived variational expressions
for the input impedance of lossless log-periodic trans-
mission lines and classified them by their low-frequency
behavior.

The log-periodic multiport circuits are based upon
quite different design approaches. The design procedure
may be summarized as follows.

1) The circuit is constructed so that its performance
will be periodic with respect to the logarithm of
the frequency.

2) Basic symmetries of the junction are specified so
that the normal modes or eigenvectors are inde-
pendent of frequency, and the eigenvalues allow
the elements of the scattering matrix to assume the
desired characteristics. The analysis of the circuit
usually reduces, then, to the analysis of an equiva-
lent single transmission line which is shunt and/or
series loaded in a log-periodic manner.

3) If possible, the design parameters of the circuit are
chosen so that the eigenvalue phases (or the input
reflection coefficients of the normal modes) are
linear functions of the logarithm of the frequency.
This condition yields constant phase differences
between eigenvalues, and hence the magnitudes of
the elements of the scattering matrix will be inde-
pendent of frequency.
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4) Also, if practical, the design parameters are chosen
so that the phase differences approximate particu-
lar values which, when achieved, cause certain ele-
ments in the scattering matrix of the circuit to
vanish.

5) The number of cascades in the circuit is deter-
mined by the required bandwidth. To increase the
bandwidth, itis only necessary to add on additional
coupling sections. The largest dimension of the
circuit is determined by the lowest frequency of
operation. The high-frequency limit is determined
by the length of the shortest coupling elements.

From the preceding procedures, it is apparent that the
successful performance of log-periodic circuits depends
critically upon achieving and controlling a linear phase
characteristic for a transmission line loaded in a log-
periodic manner. The objectives of this paper are to
provide a physical insight into the behavior of simple
one-port log-periodic transmission line circuits and to
present the results of extensive computer investigations.
Although emphasis is placed upon low-loss circuits, some
interesting results are presented for circuits composed
of low-Q transmission lines. Before discussing the nu-
merical results, the definition, general characteristics
and analytical procedures for log-periodic transmission
line circuits are presented.

II. THEORY AND ANALYSIS
A. Definition of Log-Periodic Circuits

The circuits to be considered in this paper consist of
an infinite number of two-port networks connected in
cascade as illustrated in Fig. 2, wherein reference
directions for the voltage and current are defined. The
voltage and current at terminals 1 of the nth network
may be related to the voltage and current at terminals 1
of the (n+1) network by the familiar 4 BCD matrix,

’ Va
¢y

In

} 4w Ba
Cn Dn

1 Vn+1

In+1

where the subscripts 1 and 2 have been omitted. This
cascaded network is defined to be log-periodic if the
voltage and current satisfly the following functional
equations:

Vi(p) = Vasa(rp)
L.(p) = Lnya(7p) (2)

where p is the normalized complex angular frequency
and the design ratio 7 is a positive constant less than one.
These simply state that the voltage and current at posi-
tion # and frequency p are identical to those at position
n+1 and frequency 7p. The functional equations (2) are
equivalent to first-order partial difference equations.
The general solution for the voltage is given by [6]

Va(p) = f(n p)@(r—p) 3)
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Fig. 2. Cascade of two-port circuits.

where f is an arbitrary periodic function with period
|In 1-[ and ® is an arbitrary function. Arbitrary periodic
functions always arise in the solution of difference equa-
tions with a continuous independert variable. For a
particular problem they may be determined from the
boundary conditions [9]. The general solution for the
current is the same form as (3).

In order to determine the restrictions that (2) place
on the elements of the ABCD matrix, rewrite (1) in
terms of the independent variables 41 and 7p and
compare the new equations with (1). It is then found
that the matrix elements must satisfy functional equa-
tions identical to (2);i.e.,

Au(p) = Anyalrp),

The general solution for the matrix elements may be
written as

etc.

4.(p) = B(p). )

The arbitrary periodic function has been omitted since
this type of frequency variation is impractical to
achieve.

If voltage and current generator terms were included
in (1), it would be found that the solutions for the sources
would also be of the form (4). If it is specified that there
be only one shunt current generator J in the cascade,
an allowable solution is

Ju(p) = (rp) =1,
=0,

th <1t p < k
Ty K<tk <l (5)

where & is a constant. This type of source must move
from one terminal pair of the cascade to an adjacent
pair when the frequency is changed by 7 (or a period).
If k& approaches zero, then the source will appear in-
finitely far to the left in Fig. 2. We will be interested
only in circuits for which the elements of the ABCD
matrix assume the limiting forms

lim A, = lm D, =1
lim B, = lim C, =0. (6)

These relations imply that the network becomes a
transmission line of infinitesimal length as »—— . Thus
if it is specified that 2—0 in (3), the particular location
of the source is immaterial if it is placed at a terminal
pair such that the conditions (6) are closely approxi-
mated. In this sense then, the source may be considered
as a fixed frequency-independent source.

Under the conditions (6) it is apparent that the volt-
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age and current become independent of #z as n— — .
Thus, the voltage and current (and hence the impe-
dance) are periodic functions of the logarithm of the fre-
quency. Since the voltage and current must be single-
valued functions of the complex frequency p, it may be
immediately argued that they are doubly periodic func-
tions of In p and may be represented by elliptic func-
tions. The equivalent mathematical statement is

lim V.(p) =f(np) =jlnp+rInrt+si2x). (7)

s —
This simply states that the magnitude of p may be
changed by the factor 77 and the phase by s2w, where 7
and s are integers, without changing / or V. The real
and imaginary periods of the doubly periodic function
are In 7 and 2w, respectively. Thus we have the im-
portant conclusion that doubly periodic tunctions
should appear in the exact solutions for log-periodic
structures. This has been verified for the simple case of
an infinite number of series LC circuit elements placed
in parallel [6].

The particular circuit which is the major subject of
this report is illustrated in Fig. 3. The circuit may be
considered as an infinite cascade of syvmmetrical cells
consisting of transmission lines of length 8, and charac-
teristic impedance Z; shunt loaded by open-circuit lines
of length 6, and impedance Z,. The elements of the
A BCD matrix are, for the lossless case, given by

_ 71 sin B,
A, =D, =cos8, — — —
274 cot b,
X - Z1(COS E,L - 1)
B, =jZ, l:sm 6, +—m——
275 cot 8,
_ Zi(cos B, + 1)
C, = l:sin B, _IL——,--] (8)
1 274 cot 0,

Hz.*.i,_+_5 ; [ |

n

-——-0

Fig. 3. Log-periodic shunt loaded transmission line.

If losses are to be included in the circuit, then @, is re-
placed by 8,(1—;/2Q) where Q=08/2«. Adjacent sec-
tion line lengths are related by

GYL —9_",

o= =_". )
0n+1 0n+1

By expressing the line lengths in terms of, sayv, the Nth
section line length,

0, = ™ "y, G, = ™"y

(10)
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it is apparent that (8) satisfies (4), since 6y is propor-
tional to the frequency.

B. General Performance Characteristics

The infinite cascade of Fig. 3 may be divided into
several regions. Near the input, the cell image impe-
dance approaches a constant value given by

1/2

::Z1

. —1/2

Zo = lim

n——

(11)

1+
[

n

where ¢ =0,/8, and n=/Z2,/Z,. Hence, in this region, the
structure is equivalent to a uniform transmission line.
For some distance past the input region the image im-
pedances of adjacent cells are only slightly different so
that the structure is equivalent to a slowly varying non-
uniform transmission line. Beyond this latter region,
large changes in the cell image impedance occur, and
eventually the cell image impedance and propagation
function become complex. This is termed the stop or
reflection region and occurs when the stub length is
somewhat shorter than a quarter wavelength. Past this
first stop region there are alternate pass and stop
regions.

An incident wave applied at the input propagates
along the structure and is partially or completely re-
flected at the first stop region. If complete reflection
takes place, then ideally the input reflection coefficient

is given by
‘27Tln0N
P=exp| —j Tt x
Ilnri

(12)

where 8y is proportional to frequency and x is a con-
stant. The reflection coefficient has been normalized to
(11). Note that the form of the reflection coefficient is
similar to that of an open-circuited transmission line
except that the argument of the exponential function is
proportional to the logarithm of the {requency rather
than frequency. Curve A of Fig. 4 illustrates this linear
phase variation wherein the phase changes by 2x radians
when the frequency is changed by the factor 7 or a
period. Calculations show that the phase of the re-
flection coefficient varies as curve B, wherein the phase
deviates from the desired straight line characteristic by
a maximum value denoted by Aj;. For given values of
o, 1, and Q, this phase characteristic is achieved for
greater than some minimum value. Maximum phase
deviations of several degrees are ordinary and devia-
tions of only a small fraction of a degree are possible.

If complete reflection does not occur at the first stop
region, then a portion of the wave propagates to the
next stop region where it is partially or completely re-
flected. This leads to large phase deviations from the
desired linear characteristics and, in some cases, to
jumps of 27 as illustrated by curve C.

If all dimensions of the circuit of Fig. 3 are scaled
gradually from the original to 7 times the original di-
mensions, it is easily shown that the phase curve moves
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Fig. 4. Reflection coefficient phase characteristics

of log-periodic circuits.

up by the amount 2w. A scaling of 4/7 with a phase
change of 7 is illustrated by curve D of Fig. 4. This phe-
nomena is analogous to the phase rotation principle for
log-periodic antennas and is useful in the design of con-
stant phase difference circuits.

C. Awnalytical Procedures

The log-periodic cascades may be solved by straight-
forward, but tedious, matrix multiplication. The nu-
merical results described later were all obtained with the
aid of a high-speed computer. It is desirable to have
exact closed form solutions since this would greatly
simplify the design of multiport circuits. However, this
seems impossible for most cases considered. As an al-
ternative, it is quite desirable to have approximate
solutions which could provide approximate design pro-
cedures or, at the least, qualitative information. Several
approaches to this end are described.

In general, the networks may be lossy. However, two
limiting cases are of the most importance. The first is
when the networks are lossless, in which case the input
impedance of the structure is totally reactive and varies
with frequency in a log-periodic manner. An approxi-
mate solution for this case would be quite helpful. In
the second case, the loss is such that practically all of
the incident energy is absorbed and the reflected wave
is small or negligible. Approximate solutions for this
case can be obtained by approaches analogous to the
WKB]J method.

Equations (1) are simultaneous, first-order difference
equations. A second-order difference equation in one
dependent variable may be easily obtained by elim-
inating the other. The result is
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—47LBn Bn
Ly D,L+1] +v, —E o,
B B

n

Viags — Vn+1[ (13)

n

In principle, this second-order difference equation may
be solved by techniques analogous to those used for
second-order differential equations. However, since the
variable coefficients have such complicated forms, it is
usually impossible to obtain exact closed form solu-
tions. For example, if the 4 BCD elements given by (8)
are substituted in (13) and use is made of (10), it will be
found that the independent variable # appears as an
exponent in the argument of the trigonometric func-
tions. As n—> — «, the coefficients reduce to constants
and the solution in this region is simple. However, this
is of little use since it applies only in the region where
the cascade is equivalent to a uniformly loaded trans-
mission line. The problem may also be attacked from
an impedance view. Let

(14)

Dividing the first equation of (1) by the second, and
rearranging terms, a nonlinear first-order difference
equation is obtained.

ZnZn+1Cn - (Zn+1 - Zn)An - Bn, = 0 (15)

It has been assumed that each cell is symmetrical such
that 4, =D,. In general, this equation is quite difficult
to solve. A solution may be obtained for the special and
somewhat trivial case where the image impedances of
all the cells are identical; that is,

Ba
Zg,n = — = Zo.
Cn

Under these conditions, the solution for the cascade
may be written as [10]

(16)

n—1 _CnZO
Z, = Zytanh [C + > tanh™! g :l, @an

ny n

where 7y is the starting point of the network (ideally
9= — %) and C is a constant.

In some cases a better physical insight to cascaded
networks may be obtained by analyzing them in terms
of incident and reflected waves rather than voltage and
current. In the following the waves are related to the
voltage and current by image impedances which are a
function, in general, of #. Figure 5 illustrates a cascade
of symmetrical two-port networks with image propaga-
tion functions ¢, and image impedances Z;,. These
functions are given by

B,
ZO,n = /‘/—'
Cy

ettn = 4, + v/B,C,.

(18)

(19)
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Fig. 5. Definition of wave functions for cascade.

The image impedances are defined such that, if the
network is terminated in the image impedances, the
propagation through the network is expressed by ex-
ponential ¢,. To show how this comes about, make the
substitutions

Vl,n = ZO,nllz[al,n + bl,n]7

Vz,n = Zo,nl/2 12 + b2,n] (20)
jl,n = ZO,nﬁllg[al,n - bl,n]y
IZ,n = ZO,nhI/Z[_aﬂn + b:!,n] (21)

into (1). This assumes, of course, that Z;, is nonzero,
which holds for most LP circuits only if losses are in-
cluded. Rearranging, it is found that the a’s and b’s are

related by
a1,y et 0 ban
)=l =]
bl,n 0 ehd)" a2,n

Referring to Fig. 5, what we desire is a wave matrix

of the form
{:dl,njl _ [All,n 4 12‘ni| |:051,n+1:|
bl,n A21,n A‘zz,n bl.n+1

which relates the incident and reflected waves (a:1,, and
b1, respectively) for adjacent networks. Since the
image impedance of network n may be different from
the image impedance of network #z-+1, care must be
taken in satisfying the boundary conditions which are
that the voltage and current are continuous. Then mak-
ing use of the boundary conditions, it may be shown that
the desired matrix relation is given by (omitting the
subscripts 1 and 2)

(22)

(23)

a, en AL N
]=e] @)
bn Pnegd’” e—d’n bn+1
where
ZO,n+] — Zo,n
Pn = R
ZO,71+1 + ZO,n
and
ZO,n+1 —l_ ZO,n
En =

Z(ZO,IL+IZO,n)I/2

The quantity p, is similar to a reflection coefficient and
represents the mismatch between adjacent cells of the
network, £, is nearly equal to one except in the reflec-
tion region.

Figure 6(a) illustrates the variation of Zy,, and ¢, as
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Fig. 6. Frequency dependence of image parameters
for cell of circutt of Fig. 3.

a function of 8, as determined from (8), (18), and (19)
for a cell of the circuit of Fig. 3. The results are for a
typical case of 0= o, p=2, and o=1. Figure 6(b)
shows the corresponding variation of {p,b[ and E,,,’*l
for the case of r=0.841. It will be noticed that ~pn| is
quite small except in the reflection region where it take,
on the value one over a bandwidth determined by 7.
For finite Q, the discontinuities in the curves of Fig.
6(b) would not be present. As before, the performance
of the complete network may be obtained by straight-
forward matrix multiplication.

This representation of the cascade network gives, in
some cases, considerable insight into the performance
of the network. For example, writing the first equation
of (24) we have

(25)

If there is loss in the circuit such that the reflected wave
b.41 is small, then the second term on the right may be
neglected to give, approximately,

@, = En [6¢nan+1 + pnedmbn+1]‘

e_¢n
3

The solution of this simple first-order difference equa-
tion is

gy = Ap. (26)

n—1 e“d’n
a, = [1 (27)
ng En
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which may be further simplified by assuming £, equals

one to give
Z 1/2 n—1
V. = |: 0. H e—cosh“1 Ay

ZO,’ll(] ng

where use has been made of (19) and (20). This solu-
tion for the cascaded networks is analogous to the
WKB] solution for a continuously varying transmission
line. A similar solution can be obtained for b,. These
solutions would be expected to be accurate except in
regions where p, and &, differ appreciably from zero and
one, respectively.

The second-order difference equation for a,, derived
from (24), is

(28)

Pr+1
Anyo — an+1£n+1 (6—¢n+1 + 6¢n+1>
Pr

€n+1Pn+1

+ aa

etntimtn = 0, (29)

gnpn
Again, it seems impossible to obtain closed form solu-
tions because of the complexity of the coefficients for
the circuits of interest.
Defining a pseudoreflection coefficient by

(30)

and dividing the second equation of (24) by the first,
we obtain the nonlinear equation

Top1lpae?r — Tppie7® + Thefr — pen = 0,

(31)

If the reflection coefficient on the line is small, the first
term may be neglected with respect to the others. The
solution of the resulting first-order linear difference
equation may be written as

o0 m
ro= 2 pu [T
m== n

n

(32)

where I',, is the reflection coefficient looking into the nth
section toward the right in Fig. 5. It is seen that this is
simply the sum of reflections at the junctions of adja-
cent cells delayed by the proper propagation functions.
From observation of Fig. 6, it is apparent that the re-
flection region is the major contributor to the magnitude
of the input reflection coefficient. Attempts to obtain
simple closed form solutions to (32) for the circuit of
Fig. 3 have been unsuccessful.

D. Computational Procedure

Since attempts to obtain closed form solutions for LP
networks were unsuccessful, it was necessary to resort
to the use of a high-speed computer. Since knowledge of
the input reflection coefficient of LP networks is suffi-
cient to determine their performance, calculations of
the internal voltages and currents were not performed.
It is expected that the voltage distribution would be
similar to that reported by Mittra and Jones [7].
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Ideally, the circuit consists of an infinite number of
cells. Since the calculation and construction of the ideal
circuit is impossible, calculations were made for net-
works with a finite number of cells numbered from 1 to
N. To account approximately for the deleted cells num-
bered from 0 to — e, a compensation transmission line
section of lengthy, and characteristic impedance Z, was
added to the network as illustrated in Fig. 7. The length
is determined from

IPO = Z d)n
n=0

or

o
1 —7

Yo = ¢g ZT_”=

n=0

(33)

provided ¢, is small. Z, is determined from (11).

¢.2 é-1 éo 1
Zy,-2 Zo,-1 Z0,0 Zp,1
0 —— == [ - o [-S
I [
| |
| |
t I
’ [
! e |
[ A N ——
n=o
(@)
#
0,2, Z,1
O < —o
®)

Fig. 7. Compensation section for log-periodic circuit.

The 4B CD matrix for the complete network may be
obtained by straightforward matrix multiplication as
follows:

4 B N4, B,
D (34)
C D n=0 Cn Dn
where
Ay = cos Yy
B() = jZo Sil’l \bo
J .
(o =—-sIn
"= Yo
Do = cos ¢y

and the other matrix elements are determined from the
cell configuration. The input reflection coefficient, nor-
malized to Z,, is then given by
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_ AZy+ B — Zy(CZxi1 + D)
AZys1+ B+ Zo(CZys1 + D)

4

(35)

where Zy,; is the termination impedance placed on the
output of cell N.

The input reflection coefficient was calculated m fre-
quencies per period for several periods. The computer
program was designed so that the magnitude and phase
of the reflection coefficient were printed both graphi-
cally and numerically vs. the logarithm of the frequency.
The deviation of the phase from linear was also printed
graphically. This allowed a quick determination of the
performance of the circuit.

The objective was to determine conditions on the cir-
cuit parameters so as to achieve a linear phase charac-
teristic. Since it was found that there was negligible end
effect for circuits with nearly linear phase wvariation,
the termination impedance had negligible effect upon
I" except below the cutoff frequency. Most of the results
were obtained with Zy,;=Z,.

III. NuMERICAL RESULTS

Although calculations have been performed for a
wide variety of log-periodic transmission line circuits,
the majority of results reported here are for the circuit
of Fig. 3. The performance of most of the other circuits
(see Part IT—Two-Port Circuits) is quite similar.

The compensating section length 4 is determined
from

7 1i/2
(1+2) @
b0 cos™! A o
o = = =
1 —r 11— 1—7

(36)

where A, is determined from (8) and it is assumed that
6y is small.

The circuit computations were originally made for
lossless circuits (i.e., infinite (). By making computa-
tions at a sufficient number of frequencies per period,
it was nearly always found that phase jumps or end
effect would occur in an extremely small bandwidth.
Except at a frequency where a stub is A/4, there is
always a finite but extremely small coupling to the cir-
cuit structure beyond the reflection region. The phase
jumps are due to resonance involving this coupling. By
inserting a small loss in the circuit elements, these reso-
nances may be damped out. Thus, it is important to use
reasonable Q values in computer investigations of log-
periodic circuits.

The phase deviation A for a ten-section transmission
line circuit is plotted in Fig. 8 vs. the normalized fre-
quency over a 20 to 1 bandwidth. Scales showing
and 6y vs. frequency are also included. The spacing be-
tween vertical lines is equal to two periods of frequency.
If we define the bandwidth of the circuit as the frequency
range for which the phase deviation is less than five
degrees, it is seen that the structure has a bandwidth of
11 to 1. The low- and high-frequency cutoffs occur when
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Fig. 8. Phase deviation from linear of log-periodic circuit.

0y and 0, are approximately 65° and 40°, respectively.
The low-frequency cutoff occurs approximately when
the propagation function ¢y becomes equal to , i.e.,
at the onset of the stop band for cell V. From these re-
sults, the bandwidth of an NV section circuit with the
same parameters is readily inferred to be 0.48r—¥+1,

For normalized frequencies from 1.3 to 3, it will be
noticed that the maximum phase deviation from linear
is approximately frequency-independent and is less
than one degree. This performance would be expected
over the complete spectrum for a truly log-periodic cir-
cuit with an infinite number of sections. For frequencies
greater than 3, the maximum phase deviation increases
rapidly. This is due to the mismatch between the com-
pensation section and the first section of the circuit. A
brief discussion of this is given in Section IV. If this
compensation section were not included, then the phase
deviation from linear would be much greater.

A portion of a large number of parameter investiga-
tions of the simple circuit of Fig. 3 is summarized in
Figs. 9-12. The important design parameters are 7, o,
Q, and 5. The curves show the variation of the maximum
phase deviation and magnitude of the reflection coeffi-
cient vs. one of the above parameters. The common set
of parameters for the four figures are:

7 = 0.841, o=1, Q = 200, n = 2.

These values were chosen since they are similar to those
used for practical multiport circuits.

Figure 9 illustrates the variation of the magnitude ] I‘]
and maximum phase deviation from linear, Ay, of the
input reflection coefficient vs. the design ratio 7. The
empirical expression

Ir| = exp[ﬁh]

was determined from a large number of computer re-
sults. Surprisingly, this formula is accurate to the third

37)
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decimal point for an extremely wide range of Q and 7,
provided the circuit has no end effect. Equally surpris-
ing, 'I" is essentially independent of ¢ and 7. The
magnitude of the reflection coefficient drops off quite
rapidly as 7 approaches one. This is to be expected since
for a lossless circuit the ratio of the stored energy W to
the incident power Pis given by (Montgomery etal.[11])
W T* dr

—_— =

P o df (38)

where * denotes the complex conjugate. Substituting
from (12) we have

Fig. 12. Dependence of Ay and |T'f on 9. r=0.841, s =1, 0 =200.

W 1 39
P f | log = I (39)
Thus, as 7 approaches one, the stored energy increases
rapidly. Hence, for a lossy circuit it is expected that the
dissipation would increase as the stored energy increases.

It will be noticed that A, becomes quite large for 7
less than 0.68. For 1 less than 0.65, end effect and hence,
rapid phase jumps, are encountered since the shunt
stubs do not load the line heavily enough to cause com-
plete reflection in the reflection region.

As 7 is increased, Ay decreases rapidly to a value of
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0.02 degree at 7 equal to 0.92. This trend might also be
expected since the bandwidth of a period decreases as
7 increases. For these calculations it was necessary to
make N large enough so that the phase deviations due
to the “mismatch” of the compensation section were
less than the phase deviations of the basic log-periodic
circuit. For 7 <0.80, 20 sections were used. For larger 7,
N was increased such that the phase deviation due to
the mismatch was less than 0.01 degree. For 7=0.92,
this required 60 sections. The frequency range was
chosen so that 8y was always greater than 180 degrees.

For most applications it is desirable to have A small
(on the order of one degree) and ‘ 1’[ nearly equal to one.
As can be seen from Fig. 9, a compromised value of
T must be chosen.

In Fig. 10, |T'| and Ay are shown as a function of Q.
For Q greater than 30, Ay, is practically independent of
Q. Ayr increases rapidly as Q is decreased below 30. For
the lossy circuits, the input characteristic impedance
will be complex rather than real as given by (3). If |T']
had been normalized to this complex impedance, it is
likely that Ay would be much smaller for small Q. For
typical strip line construction, Q is on the order of sev-
eral hundred.

Since the magnitude of the reflection coefficient drops
off quite rapidly as Q is decreased, it is apparent that
low-loss transmission lines should be used for log-
periodic circuits. The empirical formula is accurate even
for Q=3.16 where |[I'| =0.003.

It is interesting to compare the performance of this
transmission line circuit with simple log-periodic an-
tennas such as the dipole array. The latter consists of a
lossless transmission line shunt loaded with thin di-
poles. The input impedance of a dipole is approximately
given by that of a lossy open-circuited transmission line
[12] with a length equal to half the dipole length. For
typical dipoles, the Q of the equivalent transmission line
is on the order of 5 to 10. Since 7=0.841 is reasonable
for a log-periodic dipole antenna, it would be expected
from the curve of Fig. 10 that the input reflection co-
efficient should be on the order of 0.1. This corresponds
quite closely to reported measurements. (The reflection
coefficient locus for an LP antenna is very similar to
that for a LP circuit.) If attempts are made to reduce
the size of a LP antenna by foreshortening the dipoles
and hence increasing the Q of the dipoles it would be
expected that the input reflection coefficient should rise
rapidly. This phenomena has been observed by many
workers in the field. The increase in [I‘l might be coun-
teracted by increasing 7. Of course, in an LP antenna,
the effective Q of the dipole radiators depends in a com-
plex manner on the mutual impedances and the design
parameters. Thus, the above discussion should only be
interpreted as qualitative.

Figure 11 illustrates the dependence of ]I‘k and Ayr
on g. For extremely small &, |T'| varies over a period of
frequency. The two curves indicate the upper and lower
bounds of ]P[ It is quite surprising that ’I‘] is essen-
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tially independent of ¢ over an extremely wide range.
For example, as ¢ varies from 0.1 to 2, the length of the
transmission line (with impedance Z;) from the feed
point to the reflection region varies from 0.16 to 3.2 A;
yvet the losses in the circuit do not change. Apparently,
most ol the loss takes place in the shunt stubs. The
phase deviation from linear reaches a minimum of 0.05
degree at 0 =2. Thus, in the reflection region, a spacing
between adjacent stubs of approximately \/2 gives a
minimum Ay, The maximum useable value of ¢ is about
three, since for larger o end-effect is observed.

The effect of » on the input reflection coefficient is
shown in Fig. 12. Both [I’l and Aj; are essentially inde-
pendent of 5 for this ratio greater than one. For 7 less
than 0.5, end-effect occurs.

It was hoped that simple empirical formulas or rules
could be derived for the minimum design ratio 7, to
achieve no end-effect and a maximum phase deviation.
However, it appears that 7,, is a very complicated func-
tion of 9, o, and Q. It is best to determine 7,, with the aid
of a computer for each particular circuit. The approxi-
mate dependence of 7, on 7 is given in Table I.

TABLE 1
n Tm
1/2 0.88
1 0.80
2 0.68

4 0.58

The criteria for this table is that A;yr be less than one
degree.

1V. PuaseE CHARACTERISTICS OF THE
REFLECTION COEFFICIENT

As discussed previously, it is desired that the input
reflection coefficient of a lossless one-port log-periodic
circuit be of the form I'=exp [—jy]| where

277' hl 01\7

e

v + x, (40)
i.e., that the phase varies linearly with the logarithm of
the frequency. It is assumed that the reflection coeffi-
cient is measured on a transmission line with a charac-
teristic impedance equal to that of the network, i.e., Zo.
In some cases the transmission line impedance Z; may
be different than Z,. Tt may be shown that the phase
T, of the reflection coefficient when normalized to Z, is

given by
zZ
{ (1 - —0> tan r -‘
V4 2

Y=Y “I_ 2 tan—_]

The last term of (41) represents a periodic deviation of
the phase from the desired linear characteristic. The
deviation is zero when
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Y

tan— =0
2

and maximum when

Y ZN\1?
tan — = (-> .
2 Zo

The maximum deviation of the phase is given in radians

by
‘ Z\ 12 Zo
Az = 2tan™?! [smh In|— =~ In— -
Z; Z,

As an example, if Zy/Z;=1.2, then A;r=10.5°

The compensating section of length ¢, discussed in
Section IIT introduces a quasi-periodic phase error due
to the mismatch between the compensating section of
impedance Z, and the input characteristic impedance
of the truncated network. If it is assumed that this
latter impedance is given by Zg4, then the maximum
phase error is a function of frequency given by

H+

(42)

Zos
Ay~ In 2

0

It was found that this expression is accurate for the cir-
cuit of Fig. 3. The magnitude of Aj is approximately
proportional to the square of the frequency. An addi-
tional phase error, which is proportional to the cube of
the frequency, occurs at the higher frequencies because
of the nonlinear frequency dependence of the propaga-
tion functions of the deleted cells. It is found that the
actual electrical length is greater than the assumed Y.

V. APPLICATIONS

The peculiar frequency dependence of one-port log-
periodic circuits is probably useful for only special and
limited applications. Radiation Systems Inc. has formed
a two-port circuit [13] for which the phase of the trans-
mission coefficient varies linearly with the logarithm of
the frequency by terminating two ports of a broadband
quadrature hybrid with identical log-periodic circuits
like that of Fig. 3. With one of the remaining ports of
the hybrid excited, it is found that the signals reflected
from the LP circuits appear at the fourth port. This cir-
cuit has been used with a four-arm log-spiral direction
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finding antenna to compensate for the log-periodic rota-
tion of the pattern. An equivalent circuit could be
achieved with two LP one-ports and a wide-band magic-
T such as the Hughes tapered-line magic-7. In this case
one LF circuit would be scaled one half of a period with
respect to the other so that their reflection coefficients
would be 180° out of phase. This circuit would have the
advantage that connector reflections would not distort
the phase of the transmission coefficient.

VI. CoNCLUSIONS

An extensive study has revealed that one-port LP
transmission line circuits may be designed such that
the phase of the input reflection coefficient varies nearly
linearly with respect to the logarithm of the frequency
over any desired bandwidth. Phase deviations from
linear of a fraction of a degree may be achieved. An
empirical but accurate formula for the magnitude of the
reflection coefficient was obtained. Magnitudes greater
than 0.9 may easily be achieved in practice. Approxi-
mate conditions for no end effect were given and the
effect of circuit design parameters on the reflection
coefficient was determined.
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