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This expression is used to calculate the ratio for

N-type silicon with resistivities 11.1 ohm-cm and 3.1

ohm-cm. In computing ] K] , it is recalled that 60 was de-

fined by

~o=e,+ifl
@

where q = Gq and e, is the permittivity of vacuum. At

room temperature co reduces to ~dc. Thus,

~z = ~2poeG — ~2

leads to

I K I = : [[1– (M.)’]’+ [UCiJLOe,]2}‘“

where 2Tr/hO = u41..Loc, and h.= 2r/k.

The following numerical values were used in the

calculation:

,, = 12 j = 22.235 GC/S

/.LH = 14.50 cm2/vdt-s XO = 0.388 cm

3 = 10 kilogauss A, = 2.14 cm

yO = 0.43 cm.
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The resulting values for

R = 0.288

R = 0.709

JUNE, 1966

the ratio are

for 11.1 ohm-cm

for 3.1 ohm-cm.

Calculations on the basis of a model using the Boltzmann

transport equation [10 ] lead to results which are smaller

than the above values by a factor of 0.88 or 1.1 dB.
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Log+Periodic Transmission. Line Circuits–Part I:
One-Port Circuits

R. H. DuHAMEL, FELLOW, IEEE, AND M. E. ARMSTRONG, MEMBER, IEEE

theoretical study of one-port log-periodic circuits 1. INTRODUCTION
transmission line shunt loaded with qen-circ~t

transmis;on lines is reported. The objective was to determine the ~ HE OBJECTIVES here are to introduce and ex-

Absfracf—A

consisting of a

conditions under which the phase of the input reflection coefficient
1

plain new concepts for transmission line circuits

varies linearly with the logarithm of the frequency. Precise definitions which are constructed according to log-periodic
and general analytical techniques for log-periodic circuits are given. design principles. As with the co;respondi;g log-
Results of extensive numerical calculations are presented to illus-

trate the dependence of the input reflection coefficient on the various
periodic antennas, these circuits provide essentially

design parameters. It was found that phase deviations from linear frequency-independent performance over any desired

on the order of one degree are quite easily achieved. finite bandwidth. Figure 1 illustrates strip line versions

of the four tv~es of circuits to be discussed. The lines in. .
the drawings represent strips which may be inserted

Manuscript received October 21, 1965; revised February 17, 1966.
The authors are with the Hughes Aircraft Company, Ground

between paraIfel ground planes. The one-port circuit of

Systems Group, Fullerton, Calif. Fig. 1 (a), which is the subject of this report, can be de-
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Fig. 1, Log-periodic transmission Iine circuits.

signed, such that the magnitude of the input reflection

coefficient is constant and the phase varies linearly with

the logarithm of the frequency.

As will be described in subsequent papers, the multi-

port circuits of Figs. 1 (b), (c), and (d) may be designed

to perform as matched junctions with certain desirable

characteristics. Under certain conditions, the two-port

circuit of Fig. 1 (b) may be adjusted such that the phase

of the transmission coefficient varies linearly with the

logarithm of the frequency. A constant phase difference

circuit may be achieved by using two identical two-port

circuits, with the exception that one is scaled by a cer-

tain fraction of a period with respect to the other. The

four-port circuit of Fig. 1 (c) with two-fold symmetry

can be designed to perform as a quadrature hybrid for

~~,hich the coupled outputs are 90 degrees out of phase,

The eight-port circuit of Fig. 1 (d) with 45 degree rota-

tional symmetry can function as a magic-T if oppo-

site ports are connected as balanced pairs. By symme-

try, there is isolation between orthogonal pairs of termi-

nals and the coupled outputs are either in phase or out

of phase.

Strictly speaking, these log-periodic circuits do not

give frequency-indepen dentperforrnance, since the phase

of the scattering coefficients varies, in general, in a log-

periodic manner and, ideally, linearly with the logarithm

of the frequency. However, the magnitudes of the scat-

tering coefficients are essentially independent of fre-

quency. This basic dispersive property of log-periodic

structures was first observed by DuHamel and Ore [1]

and was termed the phase rotation principle for log-

periodic antennas. The significance of this clispersion on

broadband signals was pointed out by Pulfer [2].

Considerable effort has been expended on the analysis

of various log-periodic circuits and antenna~s, The most

important is the classical uork of Carrel [3] on the log-

periodic dipole antenna. Using an equivalent circuit

approach, he obtained complete solutions and clesign

information for the antenna. DuHamel ~!] discussed

lumped-constant and distributed constant log-periodic

circuits and derived exact solutions in terms of elliptic

functions for a Foster type circuit consisting of a n in-

finite number of series RLC networks connected in

parallel. hIittra [5] extended the work of DuHamel and

also analyzed a log-periodic lump-loaded transmission

line. Precise definitions and the general characteristics

of frequency-independent transmission lines and log-

periodic circuits and transmission lines were given by

DuHamel [6]. It was deduced that the input impeclance

of a log-periodic structure is a doubly periodic function

of the logarithm of the complex frequency. An approxi-

mate solution for a lossless transmission line with log-

periodic sinusoidal impedance variation was also given.

Mittra and Jones [7] performed studies of the voltage

distribution on frequency-independent (or continuously

scaled) and log-periodic transmission lines shunt loaded

with series RLC impedances. Since their objective was

to gain a better understanding of the operation of an-

tennas, such as the log-periodic dipole array, they con-

centrated on transmission lines for which the VSWR

was small. Bevensee [8] derived variational expressions

for the input impedance of Iossless Iog-per’iodic trans-

mission lines and classified them by their low-frequency

behavior.

The log-periodic multiport circuits are based lupon

quite different design approaches. The design procedure

may

1)

2)

3)

be summarized as follows,

The circuit is constructed so that its performance

will be periodic with respect to the lc)garithrn of

the frequency.

Basic symmetries of the junction are specified so

that the normal modes or eigenvectors are inde-
pendent of frequency, and the eigenvalues allow

the elements of the scattering matrix to assume the

desired characteristics. The analysis of the circuit

usually reduces, then, to the analysis of an equiva-

lent single transmission line which is shunt ancl/or

series loaded in a log-periodic manner.

If possible, the design parameters of the circuit are

chosen so that the eigenvalue phases (or the input

reflection coefficients of the normal triodes) are

linear functions of the logarithm of the frequency.

This condition yields constant phase differences

bet~veen eigenvalues, and hence the magnitudes of

the elements of the scattering matrix will be inde-

pendent of frequency.
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4) Also, if practical, the design parameters are chosen

so that the phase differences approximate particu-

lar values which, when achieved, cause certain ele-

ments in the scattering matrix of the circuit to

vanish.

5) The number of cascades in the circuit is deter-

mined by the required bandwidth. To increase the

bandwidth, it is only necessary to add on additional

coupling sections. The largest dimension of the

circuit is determined by the lowest frequency of

operation. The high-frequency limit is determined

by the length of the shortest coupling elements.

From the preceding procedures, it is apparent that the

successful performance of log-periodic circuits depends

critically upon achieving and controlling a linear phase

characteristic for a transmission line loaded in a log-

periodic manner. The objectives of this paper are to

provide a physical insight into the behavior of simple

one-port log-periodic transmission line circuits and to

present the results of extensive computer investigations.

Although emphasis is placed upon low-loss circuits, some

interesting results are presented for circuits composed

of low-Q transmission lines. Before discussing the nu-

merical results, the definition, general characteristics

and analytical procedures for log-periodic transmission

line circuits are presented,

II. THEORY AND ANALYSIS

A. Definition of Log-Periodic Circuits

The circuits to be considered in this paper consist of

an infinite number of two-port networks connected in

cascade as illustrated in Fig. 2, ~vherein reference

directions for the voltage and current are defined. The

voltage and current at terminals 1 of the nth network

may be related to the voltage and current at terminals I

of the (n+ 1) network by the familiar ABCD matrix,

where the subscripts

cascaded network is

voltage and current
equations:

A,, B. V.+1
x

C. D,, l.+l
(1)

1 and 2 have been omitted. This

defined to be log-periodic if the

satisfy the following functional

v 71. , . .

‘l, n ‘2,n $,.+1

‘lII?%III

Fig. 2. Cascade of two-port circuits,

where f is an arbitrary periodic function with period

/in ~1 and@ is an arbitrary function. Arbitrary periodic

functions always arise in the solution of difference equa-

tions with a continuous independer t variable. For a

particular problem they may be determined from the

boundary conditions [9]. The general solution for the

current is the same form as (3).

In order to determine the restrictions that (2) place

on the elements of the A B CD matrix, rewrite (1) in

terms of the independent variables n+ 1 and rp and

compare the new equations with (1). It is then found

that the matrix elements must satisfy functional equa-

tions identical to (2); i.e.,

A.(p) = .4.+ I(r~), etc.

The general solution for the matrix elements may be

written as

.4,, (p) = @(r-”@). (4)

The arbitrary periodic function has been omitted since

this type of frequency variation is impractical to

achieve.

If voltage and current generator terms were included

in (1), it would be found that the solutions for the sources

would also be of the form (4). If it is specified that there

be only one shunt current generator ~ in the cascade,

an allowable solution is

J.(j) = @(,-’p) = 1, rk < rnp < k

= o, ‘-”P s “k s T-”-lP (V

where k is a constant. This type of source must move

from one terminal pair of the cascade to an adjacent

pair when the frequency is changed by r (or a period).

If k approaches zero, then the source will appear in-

finitely far to the left in Fig. 2. We will be interested

only in circuits for which the elements of the ABCD

matrix assume the limiting forms

!,(0) = vTt+l(Tb)
lim A. = lim D. = 1

1>,(p) = In+l(Tp) (2)

where p is the normalized complex angular frequency

and the design ratio 7 is a positive constant less than one.

These simply state that the voltage and current at posi-

tion n and frequency $ are identical to those at position

n + 1 and frequency rp. The functional equations (2) are

equivalent to first-order partial difference equations.

The general solution for the voltage is given by [6]

V.(p) = j(ln P)@(r-”p) (3)

n+—m n+—m

lim B. = lim C. = O. (6)
n+—. 7L+— m

These relations imply that the network becomes a

transmission line of infinitesimal Iength as n-— ~. Thus

if it is specified that k~O in (5), the particular location

of the source is immaterial if it is placed at a terminal

pair such that the conditions (6) are closely approxi-

mated. In this sense then, the source may be considered

as a fixed frequency-independent source.

Under the conditions (6) it is apparent that the volt-
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age and current become independent of n as n+ — cc.

Thus, the voltage and current (and hence the impe-

dance) are periodic functions of the logarithm of the fre-

quency. Since the voltage and current must be single-

valued functions of the complex frequency P, it may be

immediately argued that they are doubly periodic func-

tions of in P and may be represented by elliptic fu nc -

tions. The equivalent mathematical statement is

This simply states that the magnitude of @ may be

changed by the factor r’ and the phase by s2~, where r

and s are integers, without changing ~ or V. The real

and imaginary periods of the doubly periodic function

are in r and 27r, respectively. Thus w-e have the im-

portant conclusion that doubly periodic functions

should appear in the exact solutions for log-periodic

structures. This has been verified for the simple case of

an infinite number of series LC circuit elements placed

in parallel [6].

The particular circuit which is the major subject of

this report is illustrated in Fig. 3. The circuit may be

considered as an infinite cascade of symmetric] cells

consisting of transmission lines of length i7~ and charact-

eristic impedance 21 shunt loaded by open-circuit lines

of length 19~ and impedance 22. The elements of the

.4 B CD matrix are, for the lossless case, given by

ZI sin $,,
.1,, = D,, = COS ~n – ———

222 cot on

[

Z,(cos F. – 1)
B,, = j’Zl sin ~,, +

222 cot 0,, 1
“[

Zl(coson+1)
C. = ~ sin ~,, + ——

222 cot en---1 (8)

F2-Fn-’-”+fi”+”l-l

‘--T~O---
Fig. 3. Log-periodic shont loaded transmission line

If losses are to be included in the circuit, then 3U is re-

placed by @n(l —j/2Q) where Q =~/2u. Adjacent sec-

tion line lengths are related by

(9)

By expressing the line lengths in terms of, say, the Nth

section line length,

it is apparent that (s) satisfies (4), since O.V is propor-

tional to the frequency.

The infinite cascade of Fig. 3 may be divided into

several regions, Near the input, the cell image im pe-

dance approaches a constant value given by

where u = ~n/Om and q = Z1/Zz. Hence, in this region, the

structure is equivalent to a uniform transmission line.

For some distance past the input region the image im-

pedances of adjacent cells are only slightly different. so

that the structure is equivalent to a slowly varying non-

uniform transmission line. Be}-ond this latter region,

large changes in the cell image impedance occur, and

eventually the cell image impedance and propagation

function become complex. This is termed the stop or

reflection region and occurs when the stub length is

somewhat shorter than a quarter wavelength. Past this

first stop region there are alternate pass and stop

regions.

.\n incident wave applied at the input propagates

along the structure and is partially or completely re-

ffected at the first stop region. If complete reflection

takes place, then ideally the input reflection coefficient

is given by

(12)

where ON is proportional to frequency and x is a con-

stant. ‘f’he reflection coefficient has been normalized to

(1 1). Note that the form of the reflection coefficient is

similar to that of an open-circuited transmission line

except that the argument of the exponential function is

proportional to the logarithm of the frequency rather

than frequency. Curve .4 of Fig. 4 illustrates this linear

phase variation wherein the phase changes by 27r radians

w-hen the frequency is changed by the factor r or a

period. Calculations show that the phase of the re-

flection coefficient varies as curve B, wherein the phalse

deviates fronl the desired straight line characteristic by

a maximum value denoted by A.11. For given values of

o-, q, and Q, this phase characteristic is achieved for r

greater than some minimum value. Nlaximum phase

deviations of several degrees are ordinary and devia-

tions of only a small fraction of a degree are possible.

If complete reflection does not occur at the first stop

region, then a portion of the wave propagates to the

next stop region where it is partially or completely re-

flected. This leads to large phase deviations from the

desired linear characteristics and, in some cases, to

jumps of 27 as illustrated by curve C.

If all dimensions of the circuit of Fig. 3 are scaled

gradually from the original to r times the original cli-

mensions, it is easily shown that the phase curve moves
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In principle, this second-order difference equation

JUNE

(13)

may

be solved by techniques analogous to those used for

second-order differential equations. However, since the

variable coefficients have such complicated forms, it is

usually impossible to obtain exact closed form solu-

tions. For example, if the ABCD elements given by (8)

are substituted in (13) and use is made of (10), it will be

found that the independent variable n appears as an

exponent in the argument of the trigonometric func-

tions. As n+ — w, the coefficients reduce to constants

and the solution in this region is simple. However, this

is of little use since it applies only in the region where

the cascade is equivalent to a uniformly loaded trans-

mission line. The problem may also be attacked from

an impedance view. Let

2.=:. (14)
in

Fig. 4. Reflection coefficient phase characteristics
of log-periodic circuits.

up by the amount 27r. A scaling of 4? with a phase

change of ~ is illustrated by curve D of Fig. 4. This phe-

nomena is analogous to the phase rotation principle for

log-periodic antennas and is useful in the design of con-

stant phase difference circuits.

C. Analytical Procedures

The log-periodic cascades may be solved by straight-

forward, but tedious, matrix multiplication. The nu-

merical results described later were all obtained with the

aid of a high-speed computer. It is desirable to have

exact closed form solutions since this would greatly

simplify the design of multiport circuits. However, this

seems impossible for most cases considered. As an al-

ternative, it is quite desirable to have approximate

solutions which could provide approximate design pro-

cedures or, at the least, qualitative information. Several

approaches to this end are described.

In general, the networks may be lossy. However, two

limiting cases are of the most importance. The first is

when the networks are lossless, in which case the input

impedance of the structure is totally reactive and varies

with frequency in a log-periodic manner. An approxi-

mate solution for this case would be quite helpful. In

the second case, the loss is such that practically all of

the incident energy is absorbed and the reflected wave

is small or negligible. Approximate solutions for this

case can be obtained by approaches analogous to the

WKBJ method.

Equations (1) are simultaneous, first-order difference

equations. A second-order difference equation in one

dependent variable may be easily obtained by elim-

inating the other. The result is

Dividing the first equation of (1) by the second, and

rearranging terms, a nonlinear first-order difference

equation is obtained.

ZnZn+lC. — (Z.+l – Z.) An – B. = O. (15)

It has been assumed that each cell is symmetrical such

that A,, = D.. In general, this equation is quite difficult

to solve. A solution may be obtained for the special and

somewhat trivial case where the image impedances of

all the cells are identical; that is,

dB.
Zo,n = — = 20.

Cn
(16)

Under these conditions, the solution for the cascade

may be written as [1o]

[

.—1
– C.ZQ

Z. = ZO tanh C + ~ tanh–’ — 1A. ‘ (17)

no

where no is the starting point of the network (ideally

TZO = — ~ ) and C is a constant.

In some cases a better physical insight to cascaded

networks may be obtained by analyzing them in terms

of incident and reflected waves rather than voltage and

current. In the following the waves are related to the

voltage and current by image impedances which are a

function, in general, of n. Figure 5 illustrates a cascade

of symmetrical two-port networks with image propaga-

tion functions & and image impedances ZO,n. These

functions are given by

d
B.

Zo,n =
z

(18)
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Fig. 5. Definition of wave functions for cascade.

The image impedances are defined such that, if

network is terminated in the image impedances,

propagation through the network is expressed by

ponential on. To show how this comes about, make

substitutions

VI,,, == 20,,, [ 11’2al,~+ b~,, ,

the

the

ex-

the

V2, n = Zo, nl/2[a2,n + Zu,nl (20)

11,,, = 20,. [ 1‘llZ al, ~ — bl,,, ,

1.3,,, = ZO,m [’112 —a~. + l~z,. 1 (21)

into (1). This assumes, of course, that 20,,, is non zero,

\\-hlch holds for most LP circuits only if losses are in.
eluded. Rearranging, it is found that i-he a’s and b’s are

related by

Referring to Fig. 5, what we desire is a wave matrix

of the form

[1[
al,~&l~~,,,.4 Iz.n

1[ 1
(ZI,.+1—. (23)

bl,n A21,n A22,n bl,n+l

which relates the incident and reflected waves (al,. and

bl,n, respectively) for adjacent networks. Since the

image impedance of network n may be different from

the image impedance of network n+ 1, care must be

taken in satisfying the boundary conditions which are

that the voltage and current are continuous. Then mak-

ing use of the boundary conditions, it may be shown that

the desired matrix relation is given by (omitting the

subscripts 1 and 2)

where

20,,1+1 – Zo,n
~n . —————

20,,,+1 + 20,.

and

20,.+1 + 20,.
t,, =

2(20, ?’+120,.)1/2 “

The quantit>- p,, is similar to a reflection coefficient and

represents the mismatch between adjacent cells of the

network. & is nearly equal to one except in the reflec-

tion region.

Figure 6(a) illustrates the variation of 2.,. and & as

I .0 —-... m
-., Jm .$n

‘R.,
Re Z. (

.5 -
~

\
2

\
I

R@~n

I

o
J

o

~/6 73 on T 2 z~ /3

\
\
\

-, 5 - w-—
I 2
\
,- Imzo, “
\
\

-1,0 .
\ .x

(a)

1.0

.5

0
0

4.

@)

Fig. 6. Frequency dependence of image ptmmeters
for cell of circuit of Fig. 3.

a function of On as determined from (8), (18), and (19)

for a cell of the circuit of Fig. 3. The results are for a

typical case of Q = ~, q =2, and a = 1. Figure lfi(b)

shows the corresponding variation of I p,, [ and [ t,, I”

for the case of ~= 0.841. It will be noticed that I P. I is

quite small except in the reflection region where it take ~

on the value one over a bandwidth determined by r.

For finite Q, the discontinuities in the curves of Fig.

6(b) would not be present. As before, the f)erfOrlmalnCe

of the complete network may be obtained by straig:ht-

for~vard matrix multiplication.

This representation of the cascade netlvork gives, in

some cases, considerable insight into the performance

of the network. For example, \i-riting the first equation

of (24) we have

If there is loss in the circuit such that the reflected ~~i~ve

bn+l is small, then the second term on the right may be

neglected to give, approximately,

~–+.
a~~l = — an. (26)

‘%

The solution of this simple first-order difference eq ua-

tion is
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which may be further simplified by assuming $. equals Icleally, the circuit consists of an infinite number of

one to give cells. Since the calculation and construction of the ideal

Zo,?t

[,1
1[2 n—l

~ ~ ,-co,h-’ ~n

circuit is impossible, calculations were made for net-

V,, = (M) works with a finite number of cells numbered from 1 to

no N. To account approximately for the deleted cells num-

where use has been made of (19) and (20). This solu-
bered from O to – ~, a compensation transmission line

tion for the cascaded networks is analogous to the
section of length +0 and characteristic impedance ZO was

WKBJ solution for a continuously varying transmission
added to the network as illustrated in Fig. 7. The length

line. A similar solution can be obtained for b.. These ‘s ‘etermined ‘rem

solutions would be expected to be accurate except in

regions where pn and .& differ appreciably from zero and 4.=54.

one, respectively.
n=o

The second-order difference equation for a%, derived or

from (24), is

(

Pn+l

)

+0=405 T-”=+ (33)

a.+z — an+lf. +l e–d”+l + — @+l ?2=0

P.

+ an [n+lPn+l

provided ~. is small. Zo is determined from (11).

e’$.+l-$. = (). (29)
&lP?z +-2 ‘$- I +0 +)

=0, -2

Again, it seems impossible to obtain closed form SOIU- ~-----

tions because of the complexity of the coefficients for

the circuits of interest.

Defining a pseudoreflection coefficient by
! T;

and dividing the second equation of (24) by the first, (a)

we obtain the nonlinear equation

rn+lr,,pne~“ — rn+le–~. + med. — pne–4n= O. (31)

If the reflection coefficient on the line is small, the first

term may be neglected with respect to the others. The

solution of the resulting first-order linear difference

equation may be written as

I’n = S p. H e–2~” (32)
m=n n

where rn is the reflection coefficient looking into the nth

section toward the right in Fig. 5. It is seen that this is

simply the sum of reflections at the junctions of adja-

cent cells delayed by the proper propagation functions.

From observation of Fig. 6, it is apparent that the re-

flection region is the maj or contributor to the magnitude

of the input reflection coefficient. Attempts to obtain

simple closed form solutions to (32) for the circuit of

Fig. 3 have been unsuccessful.

D. Computational Procedure

Since attempts to obtain closed form solutions for LP

networks were unsuccessful, it was necessary to resort

to the use of a high-speed computer. Since knowledge of

the input reflection coefficient of LP netw-orks is suffi-

cient to determine their performance, calculations of

the internal voltages and currents were not performed.

It is expected that the voltage distribution would be

similar to that reported by Mittra and Jones [7].

T

41
$$O,zu 20,1

* 0

(JJ)

Fig. 7. Compensation section for log-periodic circuit.

The .43 CD matrix for the complete netw-ork may be

obt~ined by straightforward matrix multiplication as

follow’s :

.4 B

CD
I= fi:”:

nn

(34)

where

.40 = Cos +0

Bo = jZo sin +0

ancl the other matrix elements are determined from the

cell configuration. The input reflection coefficient, nor-

malized to Zo, is then given by
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AZN+, + B + ZO(CZN+l + D)
\“ .J,

where Z,v+l is the termination impedance placed on the

output of cell N.

The input reflection coefficient ~vas calculated m fre-

quencies per period for several periock. The computer

program was designed so that the magnitude and phase

of the reflection coefficient were printed both graphi-

cally and numerically vs. the logarithm of the frequency.

The deviation of the phase from linear w-as also printed

graphically. This allo~ved a quick determination of the

performance of the circuit,

The objective was to determine conditions on the cir-

cuit parameters so as to achieve a linear phase charac-

teristic. Since it \ras found that there ~,as negligible end

effect for circuits w-ith nearly linear phase variation,

the termination impedance had negligible effect upon

r except below the cutoff frequency. Most of the results

were obtained with Z~+l = 2..

III. NUMERICAL RESULTS

Although calculations have been performed for a

wide variety of log-periodic transmission line circuits,

the majority of results reported here are for the circuit

of Fig. 3. The performance of most of the other circuits

(see Part I I—Two-Port Circuits) is quite similar.

The compensating section length ~Lo is determined

from

()

112
1 +.1 PO

~. = _@& = Cos-’ -~o u

l–T l–T=— 1:–,
(36)

~rhere xl O is determined from (8) and it is assumed that

00 is small.

The circuit computations were originally made for

Iossless circuits (i.e., infinite Q). By making computa-

tions at a sufficient number of frequencies per period,

it was nearly always found that phase jumps or end

effect w-ould occur in an extremely small bandwidth.

Except at a frequency where a stub is h/4, there is

al~vays a finite but extremely small coupling to the cir-

cuit structure beyond the reflection region. The phase

jumps are due to resonance involving this coupling. By

inserting a small loss in the circuit elements, these reso-

nances may be damped out. Thus, it is important to use

reasonable Q values in computer investigations of log-

periodic circuits.

The phase deviation A for a ten-section transmission

line circuit is plotted in Fig. 8 vs. the normalized fre-

quency over a 20 to 1 bandwidth. Scales showing ~A7

and 01 vs. frequency are also included. The spacing be-

tween vertical lines is equal to two periods of frequency.

If we define the bandwidth of the circuit as the frequency

range for which the phase deviation is less than five

degrees, it is seen that the structure has a bandwidth of

11 to 1. The low- and high-frequency cutoffs occur when

Fig. 8. Phase deviation from linear of log-periodic circuit.

O,V and 61 are approximately 65° and 40°, respectively.

The low-frequency cutoff occurs approximately when

the propagation function @,v becomes equal to r, i e.,

at the onset of the stop band for cell N. From these re-

sults, the bandwidth of an N section circuit with the

same parameters is readily inferred to be 0.4,87–N+l,

For normalized frequencies from 1.3 to 3, it will be

noticed that the maximum phase deviation from linear

is approximately frequency-independent and is 1ess

than one degree. This performance would be expected

over the complete spectrum for a truly log-periodic cir-

cuit with an infinite number of sections. For frequencies

greater than 3, the maximum phase deviation increases

rapidly. This is due to the mismatch between the cc)m-

pensation section and the first section of the circuit. A

brief discussion of this is given in Section IV. If t lhis

compensation section mere not included, then the phase

deviation from linear would be much greater,

A portion of a large number of parameter investiga-

tions of the simple circuit of Fig. 3 is summarized in

Figs. 9–1 2. The important design parameters are r, u,

Q, and q. The curves show the variation of the maximum

phase deviation and magnitude of the reflection coeffi-

cient vs. one of the above parameters. The colmmon set

of parameters for the four figures are:

T = 0.841, U=l, Q == 200, q := 2.

These values were chosen since they are similar to those

used for practical multiport circuits.

Figure 9 illustrates the variation of the magnitude ) r)

and maximum phase deviation from linear, A1lJ, of the

input reflection coefficient vs. the design ratio ~. The

empirical expression

‘r’ ‘exf’[Q,i:T,l (37)

was determined from a large number of computer re-
sults. Surprisingly, this formula is accurate to the third
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decimal point for an extremely wide range of Q and T,

provided the circuit has no end effect, Equally surpris-

ing, I I’] is essentially independent of a and q. The

magnitude of the reflection coefficient drops off quite

rapidly as I- approaches one. This is to be expected since

for a Iossless circuit the ratio of the stored energy W to

the incident pow-er Pis given by (hlontgomery et al. [11])

~~, r* m
—=j _ — (38)
P 2T df

where * denotes the complex conjugate. Substituting

from (12) ~ve have

w 1

P= .~log 71 “
(39)

Thus, as r approaches one, the stored energy increases

rapidly. Hence, for a lossy circuit it is expected that the

dissipation would increase as the stored energy increases.

It will be noticed that AM becomes quite large for 7

less than 0.68. For -r less than 0.65, end effect and hence,

rapid phase jumps, are encountered since the shunt

stubs do not load the line heavily enough to cause com-

plete reflection in the reflection region.

As r is increased, A,)l decreases rapidly to a value of
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0.02 degree at 7 equal to 0.92. This trend might also be

expected since the bandwidth of a period decreases as

r increases. For these calculations it was necessary to

make N large enough so that the phase deviations due

to the “mismatch” of the compensation section were

less than the phase deviations of the basic log-periodic

circuit. l-or 7<0.80, 20 sections ~vere used. For larger T,

N was increased such that the phase deviation due to

the mismatch ~vas less than 0.01 degree. For ~ = 0.92,

this required 60 sections. The frequency range was

chosen so that ON was always greater than 180 degrees.

For most applications it is desirable to have A.v small

(on the order of one degree) and I r I nearly equal to one.

.% can be seen from Fig. 9, a compromised value of

r must be chosen.

In Fig. 10, II’ I and Al, are shown as a function of Q.

For Q greater than 30, A.u is practically independent of

Q. AAT increases rapidly as Q is decreased below 30. For

the Iossy circuits, the input characteristic impedance

will be complex rather than real as given by (3). If 117]

had been normalized to this complex impedance, it is

likely that A,~l would be much smaller for small Q. For

typical strip line construction, Q is on the order of sev-

eral hundred.

Since the magnitude of the reflection coefficient drops

off quite rapidly as Q is decreased, it is apparent that

low-loss transmission lines should be used for log-

periodic circuits. The empirical formula is accurate even

for Q= 3.16 where I I’] = 0.003.

It is interesting to compare the performance of this

transmission line circuit with simple log-periodic an-

tennas such as the dipole array. The latter consists of a

lossless transmission line shunt loaded with thin di-

poles. The input impedance of a dipole is approximately

given by that of a 10SSY open-circuited transmission line

[12 ] with a length equal to half the dipole length. For

typical dipoles, the Q of the equivalent transmission line

is on the order of 5 to 10. Since ~ = 0.841 is reasonable

for a log-periodic dipole antenna, it would be expected

from the curve of Fig. 10 that the input reflection co-

efficient should be on the order of 0.1. This corresponds

quite closely to reported measureme~]ts. (The reflection

coefficient 10CUS for an LP antenna is very similar to

that for a LP circuit. ) If attempts are made to reduce

the size of a LP antenna by foreshortening the dipoles

and hence increasing the Q of the dlipoles it would be

expected that the input reflection coefficient should rise

rapidly. This phenomena has been observed by many

workers in the field. The increase in 117I might be coun-

teracted by increasing r. Of course, in an LP antenna,

the effective Q of the dipole radiators depends in a com-

plex manner on the mutual impedances and the design

parameters. Thus, the above discussion should only be

interpreted as qualitative.

Figure 11 illustrates the dependence of 11?I and AM

on u. For extremely small u, 117[ varies over a period of

frequency. The two curves indicate the upper and lower

bounds of I r 1. It is suite surmising that I r I is essen-

tially independent of u over an extremely wide range.

For example, as a varies from 0.1 to 2, the length of the

transmission line (with impedance 21) from the feed

point to the reflection region varies from 0.16 to 3.2 A;

yet the losses in the circuit do not change. Apparently,

most 0[ the loss takes place in the shunt stubs. The

phase deviation from linear reaches a minimum clf 0.05

degree at ~ = 2. Thus, in the reflection region, a spacing

between adjacent stubs of approximately h/2 gives a

minimum A.~T. The maximum useable value of a is about

three, since for larger a end-effect is observed.

The effect O{ q on the input reflection coefficient is

shown in Fig. 12. Both I r I and A,u are essentially inde-

pendent of q for this ratio greater than one. For q less

than 0.5, end-effect occurs.

It was hoped that simple empirical formulas or rules

could be derived for the minimum design ratio ~~ to

achieve no end-effect and a maximum phase deviation.

However, it appears that ~,,, is a very complicated func-

tion of q, a, and Q. It is best to determine ~~ with the aid

of a computer for each particular circuit. The approxi-

mate dependence of ~,,, on q is given in Table I.

TABLE I

— -.

7 rm

1/2

;
4

0.88
0.80
0.68
0.58

.—.

The criteria for this table is that f-1.~r be less than one

degree.

117. PHASE CH.~RACTERISTICS OF THE

REFLECTION COEFFICIENT

AS discussed previously, it is desired that the input

reflection coefficient of a lossless one-port log-periodic

circuit be of the form 17= exp [ —j~] where

2T in OX

‘=~ln,l ‘x’
(40)

i.e., that the phase varies linearly with the logarithm of

the frequency. I t is assumed that the reflection coeffi-

cient is measured on a transmission line with a charac-

teristic impedance equal to that of the network, i.e., 20.

In some cases the transmission line impedance Z~ may

be different than ZO. It may be shown that the phase

17~ of the reflection coefficient when normalized to Z~ is

given by

(4’1)

The last term of (41) represents a periodic deviation of

the phase from the desired linear characteristic. The

deviation is zero when
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tan$=O

and maximum when

()
Zt 1/2

tan~=i — .
z,

The maximum deviation of the phase is given in radians

by

AM = 2 tan–l [Sinh’nc)”l+’42)
As an example, if 2/2, = 1.2, then AM= 10.5°.

The compensating section of length IJO discussed in

Section III introduces a quasi-periodic phase error due

to the mismatch between the compensating section of

impedance 20 and the input characteristic impedance

of the truncated network. If it is assumed that this

latter impedance is given by Zo,l, then the maximum

phase error is a function of frequency given by

It was found that this expression is accurate for the cir-

cuit of Fig. 3. The magnitude of AM is approximately

proportional to the square of the frequency. An addi-

tional phase error, which is proportional to the cube of

the frequency, occurs at the higher frequencies because

of the nonlinear frequency dependence of the propaga-

tion functions of the deleted cells. It is found that the

actual electrical length is greater than the assumed ~0.

V. APPLICATIONS

The peculiar frequency dependence of one-port log-

periodic circuits is probably useful for only special and

limited applications. Radiation Systems Inc. has formed

a two-port circuit [13] for which the phase of the trans-

mission coefficient varies linearly with the logarithm of

the frequency by terminating two ports of a broadband

quadrature hybrid with identical log-periodic circuits

like that of Fig. 3. With one of the remaining ports of

the hybrid excited, it is found that the signals reflected

from the LP circuits appear at the fourth port. This cir-

cuit has been used with a four-arm log-spiral direction

finding antenna to compensate for the log-periodic rota-

tion of the pattern. An equivalent circuit could be

achieved with two LP one-ports and a wide-band magic-

T such as the Hughes tapered-line magic-T. In this case

one LF circuit would be scaled one half of a period with

respect to the other so that their reflection coefficients

would be 180° out of phase. This circuit would have the

advantage that connector reflections would not distort

the ph,zse of the transmission coefficient.

VI. CONCLUSIONS

An extensive study has revealed that one-port LP

transmission line circuits may be designed such that

the phase of the input reflection coefficient varies nearly

linearly with respect to the logarithm of the frequency

over any desired bandwidth. Phase deviations from

linear of a fraction of a degree may be achieved. An

empirical but accurate formula for the magnitude of the

reflection coefficient was obtained. Magnitudes greater

than 0.9 may easily be achieved in practice. Approxi-

mate conditions for no end effect were given and the

effect of circuit design parameters on the reflection

coefficient was determined.
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